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Abstract

Metformin is the most widely-prescribed oral hypoglycemic medication for type 2 diabetes 

worldwide. Metformin also retards aging in model organisms and reduces the incidence of aging-

related diseases such as neurodegenerative disease and cancer in humans. In spite of its 

widespread use, the mechanisms by which metformin exerts favorable effects on aging remain 

largely unknown. Further, not all individuals prescribed metformin derive the same benefit, and 

some develop side effects. Before metformin finds its way to mainstay therapy for anti-aging, a 

more granular understanding of the effects of the drug in humans is needed. This review provides 

an overview of recent findings from metformin studies in aging and longevity and discusses the 

use of metformin to combat aging and aging-related diseases.
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Metformin Usage Beyond Type 2 Diabetes: Aging and Aging-Related 

Disease

The history of the antidiabetic drug metformin dates to the 17th century, where extracts of 

the leaves of the French lilac Galega officinalis, which contain metformin-like guanidine 

compounds, were used to treat plague, fever, snake bites, and other ailments. The anti-

glycemic property of G. officinalis was first described in Culpeper’s Complete Herbal in 

1653 [1]. Although guanidine-containing compounds are responsible for the plant’s anti-

glycemic effect in animals, these agents proved too toxic for use in humans. In 1922, 
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synthesis of metformin and related biguanide compounds phenformin and buformin was 

achieved by Werner and Bell [2], paving the way for metformin to attain widespread use in 

humans as first-line therapy for type 2 diabetes (T2D) worldwide [3] (Figure 1, Key Figure). 

Metformin also has proven roles in prevention of diabetes [4], in treatment of the polycystic 

ovary syndrome (PCOS) [5], and in helping individuals with diabetes prevent weight gain or 

even lose weight [6].

The first milestone step for the use of metformin to treat diabetes was taken by the French 

physician Jean Sterne in 1957, who achieved approval for metformin use under the brand 

name Glucophage [7]. Metformin was slow to gain approval in the USA due to concerns 

over lactic acidosis that were far greater with sister-compounds buformin and phenformin 

(the latter two are no longer in clinical use). Metformin went into use in the USA in 1995, 

boosting its use and stimulating research targeted at elucidating its mechanism of action.

Emerging evidence indicates that metformin has favorable effects on health beyond those 

associated with improvement in glycemia. Observational studies suggest that diabetic 

individuals treated with metformin manifest a survival benefit even when compared to non-

diabetic controls [8, 9]. Metformin not only reduces cardiovascular disease incidence in 

patients with type 2 diabetes [10], it similarly reduces atherosclerotic burden in non-diabetic 

individuals at risk for the disease [11]. Observational data in humans further support a role 

for metformin in prevention of aging related decline and cancer [9, 12], an area of immense 

clinical interest. Molecular analyses of septagenarians treated with metformin indicate that 

the drug elicits metabolic and non-metabolic effects consistent with multiple effects on 

aging [13]. In this article, recent progress on our understanding of metformin actions in 

aging are reviewed and explored with a concluding proposal that precision medicine 

approaches may be needed to apply metformin broadly as an anti-aging therapy in humans.

Recognition of Aging as a Disease

Aging is often referred to as a risk factor for age-related diseases and is sometimes described 

as the “sum of age-related diseases” [14]. Although it has been a long time coming, the 

World Health Organization (WHO) now formally recognizes aging as a disease in the latest 

version of the International Classification of Diseases (ICD-11, code ‘Ageing-related’ 

XT9T). The formal recognition of aging as a disease is meaningful for the development of 

future therapeutic interventions or strategies targeting aging and aging-related diseases [15]. 

It is also likely to raise interest in repurposing drugs to treat aging, such as metformin. 

Metformin has been explored as an anti-aging agent in model organisms and humans [16, 

17], given its excellent safety record for over six decades in the clinic, well-documented 

beneficial properties in cardioprotection and potential value in cancer prevention and 

treatment [18, 19].

Metformin Prolongs Lifespan and Healthspan in the Invertebrate 

Caenorhabditis elegans

C. elegans is a powerful model organism for mechanistic study of longevity, having aided in 

identification of more than 200 longevity-affecting genes and regimens [20]. The lifespan 
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prolonging effects of metformin in C. elegans were first reported in 2010 [21]. This study 

demonstrated that metformin also prolonged healthspan, the portion of the lifespan where 

animals are active, suggesting that metformin promotes both lifespan and healthy aging 

(Figure 1).

Metformin-mediated lifespan extension in C. elegans is genetically dependent upon the 

cellular energy sensor adenosine monophosphate-activated protein kinase (AMPK) and its 

upstream activating kinase liver kinase B1 (Lkb1, par-4 in the worm), as well as the stress-

induced transcription factor skn-1/nuclear factor erythroid 2-related factor 2 (Nrf2). This is 

in contrast to effects on glycemia and cell growth, suggesting that the glycemic and anti-

aging effects of the drug have distinct mechanisms of action. Subsequent work confirmed 

these observations but indicated that the effects of metformin on lifespan are far from 

straightforward [22–25]. Our studies indicate a requirement for the nuclear pore complex 

(NPC) and acyl-CoA dehydrogenase family member 10 (ACAD10) in lifespan extension, a 

pathway that is activated by direct action of metformin on C. elegans [24]. Other work 

suggests that metformin prolongs lifespan in C. elegans through direct action on lysosomes 

[25]. And yet another study suggests that metformin slows aging of C. elegans through 

metabolic modulation of the E. coli food source [22]. The potential mechanisms by which 

metformin exerts its anti-aging effects are discussed in detail below.

Metformin Extends Lifespan and Healthspan in Mice

In the early 2000s, studies at the NIH and elsewhere determined that metformin extends the 

lifespan and healthspan of genetically outbred and inbred laboratory mice [26–30] (Figure 

1). Some, but not all these studies indicate a sexual dimorphism suggestive of a greater 

benefit for female mice.

In contrast to observations in C. elegans, mice, and observational studies in humans, lifespan 

extension is not evident with metformin treatment in the fruit fly Drosophila [31] or rats 

[32], although AMPK activation in flies and body weight loss in rats was detected. The exact 

explanation for these disparate effects of metformin in different organisms remains elusive. 

Numerous individual factors affect aging, such as nutrient availability and the intensity of 

exercise [33]. Thus, factors such as activity, may explain why metformin promotes lifespan 

of certain organisms (worm, caged mice) but not others (fruit fly). Further, metformin may 

not further extend longevity of already long-lived species such as the F344 rat strain [32]. 

Finally, dosing regimens that are not optimized for each organism may also explain failure to 

achieve lifespan extension in some cases.

Current Knowledge of Metformin Targets and Its Mode of Action

Metformin has been used to treat T2D for more than 60 years, and yet even its 

antihyperglycemic mode of action remains incompletely characterized. Recent advances 

have revealed multiple cellular effects of metformin that may be relevant for its effects both 

on metabolism and aging. Under different circumstances, effects of metformin may be 

mediated by molecular targets as disparate as mitochondrial complex I [34], mitochondrial 

glycerol-3-phosphate dehydrogenase [35], and the H3K27me3 demethylase KDM6A/UTX 
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[36]. It should be noted that very few studies attempt to discriminate between direct and 

indirect metformin response pathways. Here we will make an effort to illuminate direct 

versus indirect metformin targets with available evidence.

Metformin Targets the Mitochondrial Respiratory Chain

It is widely accepted that the mitochondrion is a primary target of metformin responsible for 

its anti-glycemic effect [34, 35, 37, 38]. In line with early studies indicating a primary effect 

of metformin on complex I of the mitochondrial electron transport chain, recent work also 

provides strong genetic evidence that metformin inhibits cancer cell growth through its 

actions on complex I [34, 37, 39–41]. Our own work also shows that rotenone (a complex I 

inhibitor) and metformin both activate the same signaling cascade in the same manner in C. 
elegans and mammals [24]. Ectopic expression of the metformin-resistant S. cerevisiae 
NADH dehydrogenase NDI1 in place of complex I renders HCT 116 p53−/− colon cancer 

cells resistant to killing by metformin in vitro and in tumor allografts in vivo [34]. However, 

mitochondria continue to be challenged as a primary target of metformin, mainly because 

experimentally discernible inhibition of mitochondrial function by metformin can require 

millimolar levels of drug. It remains an unanswered question as to whether levels of drug 

that are achievable in humans also mediate metformin’s benefit on aging and prevention of 

aging-related diseases through modest effects on mitochondria. It is little appreciated that 

metformin inhibits production of reactive oxygen at far lower doses than those required to 

affect respiratory capacity [42]. Thus, it remains extremely plausible that mitochondrial 

effects of metformin dominate even at the micromolar levels obtainable in humans in vivo 
[43].

By targeting complex I, metformin lowers the relative energy charge of the cell, raising 

adenosine monophosphate (AMP) levels relative to adenosine triphosphate (ATP) [41]. 

Among other effects, the rise in AMP allosterically primes activation of the energy sensor 

AMPK [44], the significance of which in metformin’s antihyperglycemic, prolongevity, and 

anti-cancer effects remains unclear (discussed below). An additional immediate consequence 

of the rise in AMP levels is inhibition of the gluconeogenic enzyme fructose-1–6-

bisphosphatase (FBP1) [45]. Recent elegant genetic work in mice demonstrates that 

metformin lowers glucose levels through allosteric inhibition of FBP1 [45]. Thus, while 

there is some debate on the relevance of the action of metformin on mitochondrial 

energetics, the data on FBP1 provide serious credence to the idea that metformin at 

attainable levels in vivo manifests important effects via modulation of cellular energy 

charge.

Metformin and Mechanistic Target of Rapamycin Complex 1 (mTORC1)

The heteromultimeric protein kinase mTORC1 plays a central role in regulating cell growth, 

proliferation and survival in response to nutrient and energy availability [46–48]. Metformin 

inhibits mTORC1 activity in cells in culture independently of AMPK [49, 50]. From a 

longevity standpoint, metformin effects on mTORC1 and longevity are in line with the well-

known ability of genetic and pharmacologic inhibition of mTORC1 to extend lifespan across 

multiple model systems [51–57]. In support of the idea that metformin treatment modulates 
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certain downstream cellular effects by blocking mTORC1, both metformin and canonical 

mTOR inhibitors have similar molecular effects, decreasing translation of mRNAs encoding 

cell-cycle and growth regulators [58].

Cellular mTORC1 signaling is regulated by several, distinct pathways, including the TSC-

Rheb pathway [47, 59] and Ras-related GTP-binding protein (Rag) GTPase-mediated amino 

acid signaling [60, 61]. Our work builds upon the observation that metformin inhibits 

mTORC1 via the Rag GTPases [50], as we have identified the molecular mechanism by 

which this occurs: 1) metformin action at mitochondria leads to restricted transport through 

the nuclear pore complex (NPC); 2) reduced NPC transport restricts the entrance of small 

GTPase RagC into the nucleus, thus preventing its full activation; 3) as RagC activation is 

critical for normal mTORC1 activity, inactivation of RagC leads to inhibition of mTORC1 

[24].

Metformin and Mitochondrial Glycerol-3-Phosphate Dehydrogenase 

(mGPDH)

mGPDH is localized on the outer layer of the inner mitochondrial membrane, where 

metformin has been found to bind directly to the enzyme and inhibit its function, converting 

glycerol-3-phosphate to dihydroxyacetone phosphate [35]. mGPDH plays a role in the 

glycerol-phosphate shuttle, which is responsible in part for shuttling NADH reducing 

equivalents into the mitochondrial matrix, in the process regenerating cytosolic NAD+ [62]. 

The inhibition of mGPDH by metformin decreases the cytoplasmic NAD/NADH ratio and 

reduces hepatic glucose production in mice. Downregulation of GPD2 (the gene encoding 

mGPDH) mimics the antihyperglycemic effects of metformin, while metformin does not 

lower glucose in mice genetically lacking GPD2. More recent work demonstrates that 

metformin at therapeutic concentrations impedes gluconeogenesis by inhibiting mGPDH 

activity in a redox-dependent manner [63, 64]. Metformin’s ability to inhibit mGPDH may 

also contribute to the drug’s anti-cancer effects by altering cellular redox potential [65]. 

Whether mGPDH mediates other anti-aging properties of metformin requires further 

exploration.

Metformin-Mediated Activation of AMPK

Mitochondrial inhibition by metformin results in depletion of ATP and elevation of cellular 

AMP [34, 39, 40], activating the master cellular energy sensor, AMPK [44]. However, 

multiple studies demonstrate that AMPK is dispensable for the beneficial effects of 

metformin, particularly in lowering of blood glucose [63, 66, 67]. Although mice genetically 

deficient in AMPK in liver respond normally to the antihyperglycemic effects of metformin, 

some work suggests that AMPK activation that occurs at therapeutically attainable 

metformin levels may be important for certain effects of biguanides [68, 69].

An overwhelming amount of data support the conclusion that metformin blocks cancer 

growth in a manner dependent upon inhibition of mitochondrial complex I, but 

independently of AMPK [34]. Metformin inhibits mTORC1 in a manner dependent upon the 

Rag GTPases, independently of AMPK [50]. Further, AMPK and its upstream activating 
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kinase LKB1 are dispensable for metformin to inhibit cancer growth, albeit in the limited 

numbers of cancer cell types investigated [67, 70]. Our work shows that AMPK is 

completely dispensable for metformin effects on C. elegans growth, and that the pathway 

defined by metformin-NPC-RagC-mTORC1-ACAD10 is not affected by AMPK in C. 
elegans or in human cancer cell lines [24]. Thus, AMPK is unlikely to be a major effector of 

metformin action in cancer.

These observations of metformin action in cancer contrast sharply with metformin action in 

aging. Seemingly paradoxically, at least in C. elegans, AMPK is genetically required for the 

prolongevity effects of metformin, an effect that has been reproduced by multiple research 

groups [21, 22, 25]. Thus, metformin response pathways, while they may begin at the 

mitochondrion, are complex and branching. More work is needed to determine how the 

disparate effects of metformin are mediated by common versus distinct effector 

mechanisms.

Metformin and Lysosomes

The lysosome, an acidified, membrane-bound cellular organelle that participates in nutrient 

sensing and recycling, is a central hub in control of cell signaling and metabolism. 

Alterations in AMPK and mTORC1 signaling in response to metformin both require 

biochemical events that converge on the lysosome [25, 71]. AMPK phosphorylation and 

activation by LKB1 occurs on the surface of lysosomes in response to starvation [35]. 

Metformin activates AMPK via a similar mechanism on lysosomes, possibly through the 

lysosomal V-ATPase [71, 72]. Early work in isolated lysosomes also suggests that 

metformin may act to coordinate AMPK activation and mTORC1 inhibition via direct 

effects [25]. However, the exact link between metformin action and lysosomes remains 

elusive.

Lysosomes and lysosome-related organelles, which play important roles in modulation of 

aging and longevity [73], also house cellular stores of metal ions such as copper, zinc and 

iron [74]. Curiously, metformin has metal binding properties [75, 76]. Accordingly, 

metformin can affect cellular copper homeostasis, particularly in mitochondria [77, 78]. 

These findings suggest that metformin, by virtue of its concentration in mitochondria, could 

set up a copper competition between mitochondria and lysosomes, which could connect 

metformin action at mitochondria to lysosomal regulation on AMPK and mTORC1. Earlier 

work also suggests that metformin’s zinc-binding activity might target lysosomal zinc stores, 

thereby promoting the drug’s known anti-inflammatory activity [79]. Most recently, relying 

on an assay called hdPCA, Stynen et al. uncovered that metformin induces an iron 

deficiency-like state in cells [80]. Together, it appears that metformin has the potential to 

modulate effects on mitochondrial function, lysosomal function, cellular signaling, and 

inflammation on the basis of alterations in lysosomal metal homeostasis. Further 

investigation is also needed to fully reveal whether metformin action on lysosomal ions 

contributes to the prolongevity and health-promoting effects of the drug.
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Epigenetic Modulation by Metformin

Advances in machine learning have enabled next-generation studies of drug-target 

interactions [36, 81]. A recent study examined 300,000 chemical compounds and more than 

9,000 protein binding cavities, yielding up to 41 putative metformin-binding targets. Among 

these potential metformin targets, the H3K27me3 demethylase KDM6A/UTX contains an 

experimentally validated unique metformin direct-binding motif.

A second computational modeling study provided evidence that SIRT1, a NAD+-dependent 

histone deacetylase, may also be a direct target of metformin [82]. SIRT1 plays a vital role 

in growth regulation, stress response and aging modulation. It is plausible that metformin 

extends lifespan by activating SIRT1. Metformin may also impact the epigenome indirectly 

by modulation of metabolite levels known to alter the activity of histone and DNA 

modulating enzymes. Metformin is known to affect cellular NAD+, ATP, and tricarboxylic 

acid intermediate levels as well as AMPK, all of which impact the activity of epigenome-

modifying enzymes [83]. Thus, it remains a compelling, but largely untested possibility that 

metformin may exert some of its health-promoting effects through epigenomic alterations.

Metformin and the Microbiome

An increasing amount of evidence suggests that epigenetics and environmental factors 

(including diet and the gut microbiota) may trump genetics as the major determinant of 

longevity (Figure 2). The microbiota has been reported to have strong associations with 

many age-related disorders, such as T2D, obesity, and cancer [84, 85]. In certain organisms, 

metformin may impede aging and age-related disorders by modulating the microbiome [22, 

86, 87]. We and others propose microbiome-independent mechanisms for the anti-aging 

effect of metformin in C. elegans [24], but microbiome-dependent effects remain a 

possibility. Cabreiro et al. first reported that metformin promotes C. elegans lifespan by 

changing microbial folate and methionine metabolism [22]. Studies in rodents have focused 

on whether metformin modulation of the microbiota affects metabolism rather than aging 

per se [86, 88]. Studies in humans have yielded important findings on metformin’s 

microbiotal effects: 1) metformin increases the population of bacteria good at producing 

short-chain fatty acids that contribute to weight loss and inflammation suppression in T2D 

individuals [87], and 2) microbial shifts following metformin exposure may account for the 

anti-glycemic effect of metformin and its accompanied side effects in people with T2D [89]. 

However, the precise mechanisms by which metformin modulates the microbiome is still 

largely unknown.

Metformin and Extension of Human Longevity

In addition to the lifespan-promoting activity of metformin in various model organisms, 

metformin has the capability to reduce the mortality rate of diabetic patients from all causes 

independent of its effect on diabetes control [9] (Figures 1 and 2). These findings have 

prompted great interest among researchers and physicians in setting up human trials with 

non-diabetic participants to evaluate metformin as an agent to extend human longevity.
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The Metformin in Longevity Study (MILES) is a double-blind, placebo-controlled crossover 

clinical trial with 14 human participants launched in 2014 to determine whether taking 

metformin 1700 mg/day can restore more youthful gene expression in elderly people with 

impaired glucose tolerance (https://clinicaltrials.gov/ct2/show/NCT02432287). Recent 

publication of gene expression profiling of skeletal muscle and adipose tissue from the 

MILES study provided the first direct evidence that metformin modulates metabolic and 

non-metabolic gene expression linked to aging [13]. The far larger double-blind, placebo-

controlled multicenter trial Targeting Aging with Metformin (TAME), plans to enroll 3,000 

individuals aged 65–79 with a primary endpoint of the time until presence of any aging-

related morbidity (including coronary heart disease, stroke, congestive heart failure, 

peripheral arterial disease, cancer, T2D, cognitive impairment, and mortality, Figure 2). 

Subjects will take 1500 mg of metformin daily for 6 years, with a mean follow-up time of 

more than 3.5 years [16]. Results from the TAME will provide a widely expected answer to 

the question whether metformin reduces aging-associated disease and disability in non-

diabetic individuals. Further, the trial will set the stage as a paradigm of investigating anti-

aging therapies, using disease and biomarkers as surrogates of the aging process [90].

An extremely important consideration is that the doses of metformin used in preclinical 

studies of aging in vitro and in vivo, are, in most cases, not comparable to doses achievable 

in humans. Levels of the drug used in vitro to elicit molecular effects discussed below are 10 

– 100 fold higher than maximal serum levels of metformin achieved in clinical studies in 

humans (reviewed in [43]). It remains a distinct possibility that the aging-related benefits of 

metformin in humans are manifest at lower doses via chronic, low-level effects on pathways 

affected at higher concentrations in cells in culture. Early evidence in support of this 

possibility is suggested by gene expression changes manifest in human muscle and adipose 

tissue from metformin-treated individuals [13]. None the less, further testing is required to 

determine what the optimal levels of metformin required to maximize benefits in aging, and 

at that dose, which molecular effects predominate.

In spite of the lack of randomized prospective trial data on aging in humans, many in Silicon 

Valley have embraced metformin in attempts to live longer and healthier (https://

www.cnbc.com/2019/03/23/metformin-for-cancer-prevention-longevity-popular-in-silicon-

valley.html). While it is likely based upon data in diabetics that the drug is safe and 

generally well tolerated, it is unclear whether healthy individuals will manifest a net benefit 

on aging in the same way that diabetic subjects do. Below we highlight the possible issues 

with widespread metformin use to promote healthy aging in humans.

Uncertainty in the Widespread Use of Metformin

Metformin and Vitamin B12 Deficiency

Evidence indicates that long-term use of metformin can cause vitamin B12 deficiency in 

T2D patients [11, 91, 92]. The mechanism underlying this vitamin deficiency and its clinical 

consequences are still unclear. Unlike other, more severe forms of vitamin B12 deficiency 

[93], the vitamin B12 deficiency associated with metformin use is typically less severe and 

generally not accompanied by neuropathy or anemia [11]. However, whether metformin-
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induced B12 deficiency could be more clinically significant if the drug is taken by a larger 

group of people for a more substantial period of the lifespan remains unknown.

Metformin and Increased Risk of Lactic Acidosis

Metformin increases levels of lactate in mice [35] and humans [94]. While this is generally 

not clinically significant, in the setting of abnormal kidney function, the body is not able to 

eliminate metformin, leading to accumulation of the drug and risk for lactic acidosis. 

Generally metformin-associated lactic acidosis is extremely rare even in individuals with 

substantial renal dysfunction [95], but, when evident, carries a 50% mortality rate [96]. 

Phenformin, a member from the same biguanide family as metformin, was withdrawn from 

clinical use in the 1970s due to a 10-fold higher rate of severe lactic acidosis versus 

metformin [97, 98]. It is not known whether the incidence of clinically important lactic 

acidosis will increase if the drug is taken on a more widespread basis.

Uncertainty Surrounding Metformin and Its Cellular Targets

In addition to multiple targets discussed above for metformin action, Stynen et al. also 

identified 745 proteins that are altered by metformin treatment [80]. There is still uncertainty 

on whether those proteins represent beneficial or potentially detrimental off-target effects 

when metformin is taken across the lifespan. Strong consideration should be given to 

additional possible targets of the drug before it attains widespread use for anti-aging in 

humans.

Viability of Metformin as an Anti-Aging Therapy in Humans

Beyond the uncertainty surrounding metformin mechanisms of action in aging, additional 

uncertainty exists in potential side effects of metformin. Typically, gastrointestinal (GI) side 

effects, including diarrhea, nausea, flatulence, indigestion, vomiting and abdominal 

discomfort, dominate in individuals taking metformin. In most patients these effects are not 

evident or disappear over time, and only a minority have to reduce the dose or stop the drug 

altogether (<5% of people) [99]. Generally, the effects are minimized by starting metformin 

with food at a low dose and increasing gradually.

A second major area of concern is whether metformin will have efficacy across the 

population for aging. Even though metformin is first-line therapy for T2D treatment, with 

regard to glycemic effects of the drug, there are responders and non-responders [100]. 

Metformin is effective in restoring ovulation to a much greater extent in PCOS patients with 

overweight and impaired glucose tolerance versus patients with a lean body habitus [101]. 

The mechanisms underlying differential responses to metformin in humans remain largely 

unknown, although some variability may be explained by genetic variations in the 

metformin transporter organic cation transporter (OCT1) [102]. A recently published clinical 

trial suggests that metformin may negate some of the benefits of exercise on muscle, though 

this study was small in size and results were highly variable between individuals [103]. 

Further, we do not know, at the present time, whether individuals without diabetes will 

manifest longevity and reduction in aging-associated disease in response to metformin as 

individuals with or at risk for T2D. Given the uncertainty surrounding the full spectrum of 

Soukas et al. Page 9

Trends Endocrinol Metab. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metformin effects, whether the drug will benefit all who take it for aging, and the possibility 

of negative pleiotropies, we suggest that precision metformin therapy may be needed to 

apply metformin as an anti-aging drug in humans (Figure 2).

Concluding Remarks and Future Perspectives

Metformin has over 6 decades of use in diabetes with an outstanding safety record in 

treating human T2D. Mounting evidence in preclinical models and in humans suggests 

beneficial effects in reducing the risk of aging-related diseases, such as neurodegeneration 

and cancer. These properties of metformin have attracted an enormous amount of attention 

from research and industry to develop indications for metformin as an anti-aging 

therapeutics in humans. Although on the surface this would appear to be justified based 

upon the safety and tolerability of the drug, there is still much we don’t know on the mode 

of metformin action, especially in aging. Aging is a heterogeneous phenomenon, and 

different individuals in the same population also respond metformin differently. Therefore, 

large scale, multicenter, randomized, placebo-controlled trials are necessary to further 

elucidate the anti-aging effects of metformin. We also suggest that individualized, precision 

approaches may be needed to implement metformin in aging. These could be developed 

once we have better biomarkers of metformin effects in humans that correlate with favorable 

effects on healthspan and lifespan. Last but not least, if hundreds of millions of humans take 

metformin, we will need to understand the consequences of unmanaged discharge into 

ecosystem, as metformin is eliminated from the human body unchanged, and has already 

been detected in the environment and surface water.
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Outstanding Questions

• Does metformin have a sole and direct target for all effects on aging in model 

organisms and human? Alternatively, does it manifest favorable effects on 

metabolism and aging through distinct mechanistic targets? What targets or 

pathways would support its use in human to combat aging?

• How exactly does metformin work at the organellar level, such as at the 

mitochondrion and lysosome?

• How does metformin change the epigenetic landscape, and are these changes 

responsible for the effects of metformin on aging? Are the epigenetic effects 

heritable?

• Why does metformin promote the lifespan of certain but not all organisms?

• What are the human determinants of metformin action in aging and 

metabolism? Are the major determinants genetic or environmental 

(microbiota, diet)? What biomarkers can be leveraged to achieve precision 

metformin therapy in aging in humans?

• What is the fate of metformin in the ecosystem? Is metformin or its 

derivatives harmful to the future of the planet?
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Highlights

• With continuous improvement in living conditions, interest and investment in 

antiaging therapies are vastly growing. The antidiabetic drug metformin has 

garnered tremendous interest owing to its position as first-line therapy for 

type 2 diabetes treatment and exhibition of anti-aging properties in model 

organisms.

• In spite of its widespread use, the mode of metformin action is not fully 

understood. Multiple targets and distinct mechanisms have been proposed by 

which its anti-aging effects are mediated.

• Many uncertainties exist in metformin mechanisms and side effects that may 

prevent its widespread use in aging in otherwise healthy individuals.

• Studies on metformin’s antidiabetic effects demonstrate that metformin does 

not affect all users in the same fashion. Thus, precision metformin therapy 

may be needed to fully realize the benefit of metformin to combat aging-

related diseases in humans.
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Figure 1. Significant events in metformin use in diabetes and aging-related diseases.
Metformin-like compounds such as galegine are the active compounds in the French lilac 

Galega officinalis that has been used since medieval times to treat diabetes-like symptoms. 

Metformin, phenformin and buformin were synthesized by Werner and Bell in 1922, and 

studies determined that biguanides lowered blood glucose in laboratory animals in the mid 

1920s. Owing to studies in humans by the French physician-scientist Dr. Jean Sterne, 

metformin went into use in Europe in the 1950s and was later approved in the US in 1995. 

Its US approval was delayed due to concerns over lactic acidosis, far more likely with its 

sister drugs phenformin and buformin. In the early 2000s, studies at the National Institutes 

of Health determined that metformin extends lifespan and healthspan in laboratory mice, and 

shortly thereafter metformin was found in observational studies to reduce morbidity and 

mortality from aging-associated diseases such as cancer in humans. Metformin extends the 

lifespan of the roundworm Caenorhabditis elegans by up to 50%, a discovery that has 

enabled genetic dissection of the pathways necessary for metformin longevity effects. We 

predict that the future of metformin use to combat aging in humans will involve the use of 

personalized medicine approaches.
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Figure 2. Metformin effects on longevity in model organisms and in humans.
Metformin has been shown to have pro-longevity and healthspan extending properties in the 

roundworm Caenorhabditis elegans, mice, and humans. In other model organisms such as 

Drosophila (fruit fly) and rats, similar benefit has not been identified. Although data from 

prospective clinical trials in humans on metformin in aging are only just planned or 

beginning to emerge, widespread use of the drug in aging in otherwise healthy individuals 

requires far more granular understanding of its effects, and the genetic and environmental 

determinants of its success in promoting aging versus potential detrimental effects. T2D, 

type 2 diabetes.
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